Numerical Study of Semidefinite Bounds for the k-cluster Problem
نویسندگان
چکیده
This paper deals with semidefinite bounds for the k-cluster problem, a classical NPhard problem in combinatorial optimization. We present numerical experiments to compare the standard semidefinite bound with the new semidefinite bound of [MR09], regarding the trade-off between tightness and computing time. We show that the formulation of the semidefinite bounds has an impact on the efficiency of the numerical solvers, and that the choice of the solver depends on what we expect to get: good accuracy, cheap computational time, or a balance of both.
منابع مشابه
Solving k-cluster problems to optimality with semidefinite programming
This paper deals with the computation of exact solutions of a classical NP-hard problem in combinatorial optimization, the k-cluster problem. This problem consists in finding a heaviest subgraph with k nodes in an edge weighted graph. We present a branch-and-bound algorithm that applies a novel bounding procedure, based on recent semidefinite programming techniques. We use new semidefinite boun...
متن کاملA Recurrent Neural Network Model for Solving Linear Semidefinite Programming
In this paper we solve a wide rang of Semidefinite Programming (SDP) Problem by using Recurrent Neural Networks (RNNs). SDP is an important numerical tool for analysis and synthesis in systems and control theory. First we reformulate the problem to a linear programming problem, second we reformulate it to a first order system of ordinary differential equations. Then a recurrent neural network...
متن کاملA Clustering Based Location-allocation Problem Considering Transportation Costs and Statistical Properties (RESEARCH NOTE)
Cluster analysis is a useful technique in multivariate statistical analysis. Different types of hierarchical cluster analysis and K-means have been used for data analysis in previous studies. However, the K-means algorithm can be improved using some metaheuristics algorithms. In this study, we propose simulated annealing based algorithm for K-means in the clustering analysis which we refer it a...
متن کاملSome results on the polynomial numerical hulls of matrices
In this note we characterize polynomial numerical hulls of matrices $A in M_n$ such that$A^2$ is Hermitian. Also, we consider normal matrices $A in M_n$ whose $k^{th}$ power are semidefinite. For such matriceswe show that $V^k(A)=sigma(A)$.
متن کاملComputational results of a semidefinite branch-and-bound algorithm for k-cluster
This computational paper presents a method to solve k-cluster problems exactly by intersecting semidefinite and polyhedral relaxations. Our algorithm uses a generic branch-and-bound method featuring an improved semidefinite bounding procedure. Extensive numerical experiments show that this algorithm outperforms the best known methods both in time and ability to solve large instances. For the fi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Electronic Notes in Discrete Mathematics
دوره 36 شماره
صفحات -
تاریخ انتشار 2010